Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0482422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154721

RESUMO

Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Endófitos/fisiologia , alfa-Manosidase/metabolismo , alfa-Manosidase/farmacologia , Magnaporthe/metabolismo , Doenças das Plantas , Parede Celular
2.
Biotechnol Lett ; 37(11): 2279-88, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209031

RESUMO

OBJECTIVES: Isolation and identification of a novel laccase (namely Lac4) with various industrial applications potentials from an endophytical bacterium. RESULTS: Endophyte Sd-1 cultured in rice straw showed intra- and extra-cellular laccase activities. Genomic analysis of Sd-1 identified four putative laccases, Lac1 to Lac4. However, only Lac4 contains the complete signature sequence of laccase and shares at most 64 % sequence identity with other characterized bacterial multi-copper oxidases. Recombinant Lac4 can oxidize non-phenolic and phenolic compounds under acidic conditions and at 30-50 °C; Km values of Lac4 for ABTS at pH 2.5 and for guaiacol at pH 4.5 were 1 ± 0.15 and 6.1 ± 1.7 mM, respectively. The activity of Lac4 was stimulated by 0.8 mM Cu(2+) and 5 mM Fe(2+). In addition, Lac4 could decolorize various synthetic dyes and exhibit the degradation rate of 38 % for lignin. CONCLUSIONS: The data suggest that Lac4 possesses promising biotechnological potentials.


Assuntos
Proteínas de Bactérias/química , Corantes/metabolismo , Lacase/química , Lignina/metabolismo , Proteínas Recombinantes/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Lacase/genética , Lacase/metabolismo , Dados de Sequência Molecular , Pantoea/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...